extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C14).1C24 = C22×D4⋊2D7 | φ: C24/C22 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14).1C2^4 | 448,1370 |
(C2×C14).2C24 = C2×D7×C4○D4 | φ: C24/C22 → C22 ⊆ Aut C2×C14 | 112 | | (C2xC14).2C2^4 | 448,1375 |
(C2×C14).3C24 = C2×D4⋊8D14 | φ: C24/C22 → C22 ⊆ Aut C2×C14 | 112 | | (C2xC14).3C2^4 | 448,1376 |
(C2×C14).4C24 = C2×D4.10D14 | φ: C24/C22 → C22 ⊆ Aut C2×C14 | 224 | | (C2xC14).4C2^4 | 448,1377 |
(C2×C14).5C24 = C14.C25 | φ: C24/C22 → C22 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).5C2^4 | 448,1378 |
(C2×C14).6C24 = D7×2+ 1+4 | φ: C24/C22 → C22 ⊆ Aut C2×C14 | 56 | 8+ | (C2xC14).6C2^4 | 448,1379 |
(C2×C14).7C24 = D14.C24 | φ: C24/C22 → C22 ⊆ Aut C2×C14 | 112 | 8- | (C2xC14).7C2^4 | 448,1380 |
(C2×C14).8C24 = D7×2- 1+4 | φ: C24/C22 → C22 ⊆ Aut C2×C14 | 112 | 8- | (C2xC14).8C2^4 | 448,1381 |
(C2×C14).9C24 = D28.39C23 | φ: C24/C22 → C22 ⊆ Aut C2×C14 | 112 | 8+ | (C2xC14).9C2^4 | 448,1382 |
(C2×C14).10C24 = C7×C2.C25 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).10C2^4 | 448,1391 |
(C2×C14).11C24 = C2×C4×Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).11C2^4 | 448,920 |
(C2×C14).12C24 = C2×C28⋊2Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).12C2^4 | 448,921 |
(C2×C14).13C24 = C2×C28.6Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).13C2^4 | 448,922 |
(C2×C14).14C24 = C42.274D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).14C2^4 | 448,923 |
(C2×C14).15C24 = D7×C2×C42 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).15C2^4 | 448,924 |
(C2×C14).16C24 = C2×C42⋊D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).16C2^4 | 448,925 |
(C2×C14).17C24 = C2×C4×D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).17C2^4 | 448,926 |
(C2×C14).18C24 = C4×C4○D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).18C2^4 | 448,927 |
(C2×C14).19C24 = C2×C28⋊4D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).19C2^4 | 448,928 |
(C2×C14).20C24 = C2×C4.D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).20C2^4 | 448,929 |
(C2×C14).21C24 = C42.276D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).21C2^4 | 448,930 |
(C2×C14).22C24 = C2×C42⋊2D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).22C2^4 | 448,931 |
(C2×C14).23C24 = C42.277D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).23C2^4 | 448,932 |
(C2×C14).24C24 = C2×C23.11D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).24C2^4 | 448,933 |
(C2×C14).25C24 = C2×C22⋊Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).25C2^4 | 448,934 |
(C2×C14).26C24 = C2×C23.D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).26C2^4 | 448,935 |
(C2×C14).27C24 = C23⋊2Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).27C2^4 | 448,936 |
(C2×C14).28C24 = C2×D7×C22⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).28C2^4 | 448,937 |
(C2×C14).29C24 = C2×Dic7⋊4D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).29C2^4 | 448,938 |
(C2×C14).30C24 = C24.24D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).30C2^4 | 448,939 |
(C2×C14).31C24 = C2×C22⋊D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).31C2^4 | 448,940 |
(C2×C14).32C24 = C2×D14.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).32C2^4 | 448,941 |
(C2×C14).33C24 = C2×D14⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).33C2^4 | 448,942 |
(C2×C14).34C24 = C24.27D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).34C2^4 | 448,943 |
(C2×C14).35C24 = C2×Dic7.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).35C2^4 | 448,944 |
(C2×C14).36C24 = C2×C22.D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).36C2^4 | 448,945 |
(C2×C14).37C24 = C23⋊3D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).37C2^4 | 448,946 |
(C2×C14).38C24 = C24.30D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).38C2^4 | 448,947 |
(C2×C14).39C24 = C24.31D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).39C2^4 | 448,948 |
(C2×C14).40C24 = C2×Dic7⋊3Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).40C2^4 | 448,949 |
(C2×C14).41C24 = C2×C28⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).41C2^4 | 448,950 |
(C2×C14).42C24 = C2×Dic7.Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).42C2^4 | 448,951 |
(C2×C14).43C24 = C2×C28.3Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).43C2^4 | 448,952 |
(C2×C14).44C24 = C14.72+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).44C2^4 | 448,953 |
(C2×C14).45C24 = C2×D7×C4⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).45C2^4 | 448,954 |
(C2×C14).46C24 = C2×C4⋊C4⋊7D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).46C2^4 | 448,955 |
(C2×C14).47C24 = C2×D28⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).47C2^4 | 448,956 |
(C2×C14).48C24 = C14.82+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).48C2^4 | 448,957 |
(C2×C14).49C24 = C2×D14.5D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).49C2^4 | 448,958 |
(C2×C14).50C24 = C2×C4⋊D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).50C2^4 | 448,959 |
(C2×C14).51C24 = C14.2- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).51C2^4 | 448,960 |
(C2×C14).52C24 = C2×D14⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).52C2^4 | 448,961 |
(C2×C14).53C24 = C2×D14⋊2Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).53C2^4 | 448,962 |
(C2×C14).54C24 = C14.2+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).54C2^4 | 448,963 |
(C2×C14).55C24 = C14.102+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).55C2^4 | 448,964 |
(C2×C14).56C24 = C2×C4⋊C4⋊D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).56C2^4 | 448,965 |
(C2×C14).57C24 = C14.52- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).57C2^4 | 448,966 |
(C2×C14).58C24 = C14.112+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).58C2^4 | 448,967 |
(C2×C14).59C24 = C14.62- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).59C2^4 | 448,968 |
(C2×C14).60C24 = C42.87D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).60C2^4 | 448,969 |
(C2×C14).61C24 = C42.88D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).61C2^4 | 448,970 |
(C2×C14).62C24 = C42.89D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).62C2^4 | 448,971 |
(C2×C14).63C24 = C42.90D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).63C2^4 | 448,972 |
(C2×C14).64C24 = D7×C42⋊C2 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).64C2^4 | 448,973 |
(C2×C14).65C24 = C42⋊7D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).65C2^4 | 448,974 |
(C2×C14).66C24 = C42.188D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).66C2^4 | 448,975 |
(C2×C14).67C24 = C42.91D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).67C2^4 | 448,976 |
(C2×C14).68C24 = C42⋊8D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).68C2^4 | 448,977 |
(C2×C14).69C24 = C42⋊9D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).69C2^4 | 448,978 |
(C2×C14).70C24 = C42.92D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).70C2^4 | 448,979 |
(C2×C14).71C24 = C42⋊10D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).71C2^4 | 448,980 |
(C2×C14).72C24 = C42.93D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).72C2^4 | 448,981 |
(C2×C14).73C24 = C42.94D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).73C2^4 | 448,982 |
(C2×C14).74C24 = C42.95D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).74C2^4 | 448,983 |
(C2×C14).75C24 = C42.96D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).75C2^4 | 448,984 |
(C2×C14).76C24 = C42.97D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).76C2^4 | 448,985 |
(C2×C14).77C24 = C42.98D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).77C2^4 | 448,986 |
(C2×C14).78C24 = C42.99D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).78C2^4 | 448,987 |
(C2×C14).79C24 = C42.100D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).79C2^4 | 448,988 |
(C2×C14).80C24 = C4×D4⋊2D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).80C2^4 | 448,989 |
(C2×C14).81C24 = D4×Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).81C2^4 | 448,990 |
(C2×C14).82C24 = C42.102D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).82C2^4 | 448,991 |
(C2×C14).83C24 = D4⋊5Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).83C2^4 | 448,992 |
(C2×C14).84C24 = C42.104D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).84C2^4 | 448,993 |
(C2×C14).85C24 = C42.105D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).85C2^4 | 448,994 |
(C2×C14).86C24 = C42.106D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).86C2^4 | 448,995 |
(C2×C14).87C24 = D4⋊6Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).87C2^4 | 448,996 |
(C2×C14).88C24 = C4×D4×D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).88C2^4 | 448,997 |
(C2×C14).89C24 = C42⋊11D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).89C2^4 | 448,998 |
(C2×C14).90C24 = C42.108D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).90C2^4 | 448,999 |
(C2×C14).91C24 = C42⋊12D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).91C2^4 | 448,1000 |
(C2×C14).92C24 = C42.228D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).92C2^4 | 448,1001 |
(C2×C14).93C24 = D4×D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).93C2^4 | 448,1002 |
(C2×C14).94C24 = D28⋊23D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).94C2^4 | 448,1003 |
(C2×C14).95C24 = D28⋊24D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).95C2^4 | 448,1004 |
(C2×C14).96C24 = Dic14⋊23D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).96C2^4 | 448,1005 |
(C2×C14).97C24 = Dic14⋊24D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).97C2^4 | 448,1006 |
(C2×C14).98C24 = D4⋊5D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).98C2^4 | 448,1007 |
(C2×C14).99C24 = D4⋊6D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).99C2^4 | 448,1008 |
(C2×C14).100C24 = C42⋊16D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).100C2^4 | 448,1009 |
(C2×C14).101C24 = C42.229D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).101C2^4 | 448,1010 |
(C2×C14).102C24 = C42.113D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).102C2^4 | 448,1011 |
(C2×C14).103C24 = C42.114D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).103C2^4 | 448,1012 |
(C2×C14).104C24 = C42⋊17D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).104C2^4 | 448,1013 |
(C2×C14).105C24 = C42.115D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).105C2^4 | 448,1014 |
(C2×C14).106C24 = C42.116D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).106C2^4 | 448,1015 |
(C2×C14).107C24 = C42.117D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).107C2^4 | 448,1016 |
(C2×C14).108C24 = C42.118D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).108C2^4 | 448,1017 |
(C2×C14).109C24 = C42.119D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).109C2^4 | 448,1018 |
(C2×C14).110C24 = Q8×Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).110C2^4 | 448,1019 |
(C2×C14).111C24 = Dic14⋊10Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).111C2^4 | 448,1020 |
(C2×C14).112C24 = C42.122D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).112C2^4 | 448,1021 |
(C2×C14).113C24 = Q8⋊5Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).113C2^4 | 448,1022 |
(C2×C14).114C24 = Q8⋊6Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).114C2^4 | 448,1023 |
(C2×C14).115C24 = C4×Q8×D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).115C2^4 | 448,1024 |
(C2×C14).116C24 = C42.125D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).116C2^4 | 448,1025 |
(C2×C14).117C24 = C4×Q8⋊2D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).117C2^4 | 448,1026 |
(C2×C14).118C24 = C42.126D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).118C2^4 | 448,1027 |
(C2×C14).119C24 = Q8×D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).119C2^4 | 448,1028 |
(C2×C14).120C24 = Q8⋊5D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).120C2^4 | 448,1029 |
(C2×C14).121C24 = Q8⋊6D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).121C2^4 | 448,1030 |
(C2×C14).122C24 = C42.232D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).122C2^4 | 448,1031 |
(C2×C14).123C24 = D28⋊10Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).123C2^4 | 448,1032 |
(C2×C14).124C24 = C42.131D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).124C2^4 | 448,1033 |
(C2×C14).125C24 = C42.132D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).125C2^4 | 448,1034 |
(C2×C14).126C24 = C42.133D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).126C2^4 | 448,1035 |
(C2×C14).127C24 = C42.134D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).127C2^4 | 448,1036 |
(C2×C14).128C24 = C42.135D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).128C2^4 | 448,1037 |
(C2×C14).129C24 = C42.136D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).129C2^4 | 448,1038 |
(C2×C14).130C24 = C24.56D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).130C2^4 | 448,1039 |
(C2×C14).131C24 = C24.32D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).131C2^4 | 448,1040 |
(C2×C14).132C24 = D7×C22≀C2 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 56 | | (C2xC14).132C2^4 | 448,1041 |
(C2×C14).133C24 = C24⋊2D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).133C2^4 | 448,1042 |
(C2×C14).134C24 = C24⋊3D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).134C2^4 | 448,1043 |
(C2×C14).135C24 = C24.33D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).135C2^4 | 448,1044 |
(C2×C14).136C24 = C24.34D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).136C2^4 | 448,1045 |
(C2×C14).137C24 = C24.35D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).137C2^4 | 448,1046 |
(C2×C14).138C24 = C24⋊4D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).138C2^4 | 448,1047 |
(C2×C14).139C24 = C24.36D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).139C2^4 | 448,1048 |
(C2×C14).140C24 = C28⋊(C4○D4) | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).140C2^4 | 448,1049 |
(C2×C14).141C24 = C14.682- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).141C2^4 | 448,1050 |
(C2×C14).142C24 = Dic14⋊19D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).142C2^4 | 448,1051 |
(C2×C14).143C24 = Dic14⋊20D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).143C2^4 | 448,1052 |
(C2×C14).144C24 = C4⋊C4.178D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).144C2^4 | 448,1053 |
(C2×C14).145C24 = C14.342+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).145C2^4 | 448,1054 |
(C2×C14).146C24 = C14.352+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).146C2^4 | 448,1055 |
(C2×C14).147C24 = C14.712- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).147C2^4 | 448,1056 |
(C2×C14).148C24 = D7×C4⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).148C2^4 | 448,1057 |
(C2×C14).149C24 = C14.372+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).149C2^4 | 448,1058 |
(C2×C14).150C24 = C4⋊C4⋊21D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).150C2^4 | 448,1059 |
(C2×C14).151C24 = C14.382+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).151C2^4 | 448,1060 |
(C2×C14).152C24 = C14.722- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).152C2^4 | 448,1061 |
(C2×C14).153C24 = D28⋊19D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).153C2^4 | 448,1062 |
(C2×C14).154C24 = C14.402+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).154C2^4 | 448,1063 |
(C2×C14).155C24 = C14.732- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).155C2^4 | 448,1064 |
(C2×C14).156C24 = D28⋊20D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).156C2^4 | 448,1065 |
(C2×C14).157C24 = C14.422+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).157C2^4 | 448,1066 |
(C2×C14).158C24 = C14.432+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).158C2^4 | 448,1067 |
(C2×C14).159C24 = C14.442+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).159C2^4 | 448,1068 |
(C2×C14).160C24 = C14.452+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).160C2^4 | 448,1069 |
(C2×C14).161C24 = C14.462+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).161C2^4 | 448,1070 |
(C2×C14).162C24 = C14.1152+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).162C2^4 | 448,1071 |
(C2×C14).163C24 = C14.472+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).163C2^4 | 448,1072 |
(C2×C14).164C24 = C14.482+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).164C2^4 | 448,1073 |
(C2×C14).165C24 = C14.492+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).165C2^4 | 448,1074 |
(C2×C14).166C24 = (Q8×Dic7)⋊C2 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).166C2^4 | 448,1075 |
(C2×C14).167C24 = C14.752- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).167C2^4 | 448,1076 |
(C2×C14).168C24 = C22⋊Q8⋊25D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).168C2^4 | 448,1077 |
(C2×C14).169C24 = C14.152- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).169C2^4 | 448,1078 |
(C2×C14).170C24 = D7×C22⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).170C2^4 | 448,1079 |
(C2×C14).171C24 = C4⋊C4⋊26D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).171C2^4 | 448,1080 |
(C2×C14).172C24 = C14.162- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).172C2^4 | 448,1081 |
(C2×C14).173C24 = C14.172- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).173C2^4 | 448,1082 |
(C2×C14).174C24 = D28⋊21D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).174C2^4 | 448,1083 |
(C2×C14).175C24 = D28⋊22D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).175C2^4 | 448,1084 |
(C2×C14).176C24 = Dic14⋊21D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).176C2^4 | 448,1085 |
(C2×C14).177C24 = Dic14⋊22D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).177C2^4 | 448,1086 |
(C2×C14).178C24 = C14.512+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).178C2^4 | 448,1087 |
(C2×C14).179C24 = C14.1182+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).179C2^4 | 448,1088 |
(C2×C14).180C24 = C14.522+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).180C2^4 | 448,1089 |
(C2×C14).181C24 = C14.532+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).181C2^4 | 448,1090 |
(C2×C14).182C24 = C14.202- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).182C2^4 | 448,1091 |
(C2×C14).183C24 = C14.212- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).183C2^4 | 448,1092 |
(C2×C14).184C24 = C14.222- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).184C2^4 | 448,1093 |
(C2×C14).185C24 = C14.232- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).185C2^4 | 448,1094 |
(C2×C14).186C24 = C14.772- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).186C2^4 | 448,1095 |
(C2×C14).187C24 = C14.242- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).187C2^4 | 448,1096 |
(C2×C14).188C24 = C14.562+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).188C2^4 | 448,1097 |
(C2×C14).189C24 = C14.572+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).189C2^4 | 448,1098 |
(C2×C14).190C24 = C14.582+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).190C2^4 | 448,1099 |
(C2×C14).191C24 = C14.262- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).191C2^4 | 448,1100 |
(C2×C14).192C24 = C14.792- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).192C2^4 | 448,1101 |
(C2×C14).193C24 = C4⋊C4.197D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).193C2^4 | 448,1102 |
(C2×C14).194C24 = C14.802- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).194C2^4 | 448,1103 |
(C2×C14).195C24 = C14.602+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).195C2^4 | 448,1104 |
(C2×C14).196C24 = D7×C22.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).196C2^4 | 448,1105 |
(C2×C14).197C24 = C14.1202+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).197C2^4 | 448,1106 |
(C2×C14).198C24 = C14.1212+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).198C2^4 | 448,1107 |
(C2×C14).199C24 = C14.822- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).199C2^4 | 448,1108 |
(C2×C14).200C24 = C4⋊C4⋊28D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).200C2^4 | 448,1109 |
(C2×C14).201C24 = C14.612+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).201C2^4 | 448,1110 |
(C2×C14).202C24 = C14.1222+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).202C2^4 | 448,1111 |
(C2×C14).203C24 = C14.622+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).203C2^4 | 448,1112 |
(C2×C14).204C24 = C14.832- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).204C2^4 | 448,1113 |
(C2×C14).205C24 = C14.642+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).205C2^4 | 448,1114 |
(C2×C14).206C24 = C14.842- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).206C2^4 | 448,1115 |
(C2×C14).207C24 = C14.662+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).207C2^4 | 448,1116 |
(C2×C14).208C24 = C14.672+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).208C2^4 | 448,1117 |
(C2×C14).209C24 = C14.852- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).209C2^4 | 448,1118 |
(C2×C14).210C24 = C14.682+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).210C2^4 | 448,1119 |
(C2×C14).211C24 = C14.862- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).211C2^4 | 448,1120 |
(C2×C14).212C24 = C42.233D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).212C2^4 | 448,1121 |
(C2×C14).213C24 = C42.137D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).213C2^4 | 448,1122 |
(C2×C14).214C24 = C42.138D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).214C2^4 | 448,1123 |
(C2×C14).215C24 = C42.139D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).215C2^4 | 448,1124 |
(C2×C14).216C24 = C42.140D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).216C2^4 | 448,1125 |
(C2×C14).217C24 = D7×C4.4D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).217C2^4 | 448,1126 |
(C2×C14).218C24 = C42⋊18D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).218C2^4 | 448,1127 |
(C2×C14).219C24 = C42.141D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).219C2^4 | 448,1128 |
(C2×C14).220C24 = D28⋊10D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).220C2^4 | 448,1129 |
(C2×C14).221C24 = Dic14⋊10D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).221C2^4 | 448,1130 |
(C2×C14).222C24 = C42⋊20D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).222C2^4 | 448,1131 |
(C2×C14).223C24 = C42⋊21D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).223C2^4 | 448,1132 |
(C2×C14).224C24 = C42.234D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).224C2^4 | 448,1133 |
(C2×C14).225C24 = C42.143D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).225C2^4 | 448,1134 |
(C2×C14).226C24 = C42.144D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).226C2^4 | 448,1135 |
(C2×C14).227C24 = C42⋊22D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).227C2^4 | 448,1136 |
(C2×C14).228C24 = C42.145D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).228C2^4 | 448,1137 |
(C2×C14).229C24 = Dic14⋊7Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).229C2^4 | 448,1138 |
(C2×C14).230C24 = C42.147D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).230C2^4 | 448,1139 |
(C2×C14).231C24 = D7×C42.C2 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).231C2^4 | 448,1140 |
(C2×C14).232C24 = C42.236D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).232C2^4 | 448,1141 |
(C2×C14).233C24 = C42.148D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).233C2^4 | 448,1142 |
(C2×C14).234C24 = D28⋊7Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).234C2^4 | 448,1143 |
(C2×C14).235C24 = C42.237D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).235C2^4 | 448,1144 |
(C2×C14).236C24 = C42.150D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).236C2^4 | 448,1145 |
(C2×C14).237C24 = C42.151D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).237C2^4 | 448,1146 |
(C2×C14).238C24 = C42.152D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).238C2^4 | 448,1147 |
(C2×C14).239C24 = C42.153D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).239C2^4 | 448,1148 |
(C2×C14).240C24 = C42.154D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).240C2^4 | 448,1149 |
(C2×C14).241C24 = C42.155D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).241C2^4 | 448,1150 |
(C2×C14).242C24 = C42.156D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).242C2^4 | 448,1151 |
(C2×C14).243C24 = C42.157D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).243C2^4 | 448,1152 |
(C2×C14).244C24 = C42.158D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).244C2^4 | 448,1153 |
(C2×C14).245C24 = C42.159D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).245C2^4 | 448,1154 |
(C2×C14).246C24 = C42.160D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).246C2^4 | 448,1155 |
(C2×C14).247C24 = D7×C42⋊2C2 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).247C2^4 | 448,1156 |
(C2×C14).248C24 = C42⋊23D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).248C2^4 | 448,1157 |
(C2×C14).249C24 = C42⋊24D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).249C2^4 | 448,1158 |
(C2×C14).250C24 = C42.189D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).250C2^4 | 448,1159 |
(C2×C14).251C24 = C42.161D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).251C2^4 | 448,1160 |
(C2×C14).252C24 = C42.162D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).252C2^4 | 448,1161 |
(C2×C14).253C24 = C42.163D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).253C2^4 | 448,1162 |
(C2×C14).254C24 = C42.164D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).254C2^4 | 448,1163 |
(C2×C14).255C24 = C42⋊25D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).255C2^4 | 448,1164 |
(C2×C14).256C24 = C42.165D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).256C2^4 | 448,1165 |
(C2×C14).257C24 = C42.166D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).257C2^4 | 448,1166 |
(C2×C14).258C24 = D7×C4⋊1D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).258C2^4 | 448,1167 |
(C2×C14).259C24 = C42⋊26D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).259C2^4 | 448,1168 |
(C2×C14).260C24 = C42.238D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).260C2^4 | 448,1169 |
(C2×C14).261C24 = D28⋊11D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).261C2^4 | 448,1170 |
(C2×C14).262C24 = Dic14⋊11D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).262C2^4 | 448,1171 |
(C2×C14).263C24 = C42.168D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).263C2^4 | 448,1172 |
(C2×C14).264C24 = C42⋊28D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).264C2^4 | 448,1173 |
(C2×C14).265C24 = Dic14⋊8Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).265C2^4 | 448,1174 |
(C2×C14).266C24 = Dic14⋊9Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).266C2^4 | 448,1175 |
(C2×C14).267C24 = D7×C4⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).267C2^4 | 448,1176 |
(C2×C14).268C24 = C42.171D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).268C2^4 | 448,1177 |
(C2×C14).269C24 = C42.240D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).269C2^4 | 448,1178 |
(C2×C14).270C24 = D28⋊12D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).270C2^4 | 448,1179 |
(C2×C14).271C24 = D28⋊8Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).271C2^4 | 448,1180 |
(C2×C14).272C24 = C42.241D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).272C2^4 | 448,1181 |
(C2×C14).273C24 = C42.174D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).273C2^4 | 448,1182 |
(C2×C14).274C24 = D28⋊9Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).274C2^4 | 448,1183 |
(C2×C14).275C24 = C42.176D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).275C2^4 | 448,1184 |
(C2×C14).276C24 = C42.177D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).276C2^4 | 448,1185 |
(C2×C14).277C24 = C42.178D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).277C2^4 | 448,1186 |
(C2×C14).278C24 = C42.179D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).278C2^4 | 448,1187 |
(C2×C14).279C24 = C42.180D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).279C2^4 | 448,1188 |
(C2×C14).280C24 = C22×C4×Dic7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).280C2^4 | 448,1235 |
(C2×C14).281C24 = C22×Dic7⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).281C2^4 | 448,1236 |
(C2×C14).282C24 = C2×C28.48D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).282C2^4 | 448,1237 |
(C2×C14).283C24 = C22×C4⋊Dic7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).283C2^4 | 448,1238 |
(C2×C14).284C24 = C2×C23.21D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).284C2^4 | 448,1239 |
(C2×C14).285C24 = C22×D14⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).285C2^4 | 448,1240 |
(C2×C14).286C24 = C2×C4×C7⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).286C2^4 | 448,1241 |
(C2×C14).287C24 = C2×C23.23D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).287C2^4 | 448,1242 |
(C2×C14).288C24 = C2×C28⋊7D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).288C2^4 | 448,1243 |
(C2×C14).289C24 = C24.72D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).289C2^4 | 448,1244 |
(C2×C14).290C24 = C2×D4×Dic7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).290C2^4 | 448,1248 |
(C2×C14).291C24 = C2×C23.18D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).291C2^4 | 448,1249 |
(C2×C14).292C24 = C2×C28.17D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).292C2^4 | 448,1250 |
(C2×C14).293C24 = C24.38D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).293C2^4 | 448,1251 |
(C2×C14).294C24 = C2×C23⋊D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).294C2^4 | 448,1252 |
(C2×C14).295C24 = C2×C28⋊2D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).295C2^4 | 448,1253 |
(C2×C14).296C24 = D4×C7⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).296C2^4 | 448,1254 |
(C2×C14).297C24 = C2×Dic7⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).297C2^4 | 448,1255 |
(C2×C14).298C24 = C2×C28⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).298C2^4 | 448,1256 |
(C2×C14).299C24 = C24⋊7D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).299C2^4 | 448,1257 |
(C2×C14).300C24 = C24.41D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).300C2^4 | 448,1258 |
(C2×C14).301C24 = C24.42D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).301C2^4 | 448,1259 |
(C2×C14).302C24 = C2×Dic7⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).302C2^4 | 448,1263 |
(C2×C14).303C24 = C2×Q8×Dic7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).303C2^4 | 448,1264 |
(C2×C14).304C24 = C14.422- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).304C2^4 | 448,1265 |
(C2×C14).305C24 = C2×D14⋊3Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).305C2^4 | 448,1266 |
(C2×C14).306C24 = C2×C28.23D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).306C2^4 | 448,1267 |
(C2×C14).307C24 = Q8×C7⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).307C2^4 | 448,1268 |
(C2×C14).308C24 = C14.442- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).308C2^4 | 448,1269 |
(C2×C14).309C24 = C14.452- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).309C2^4 | 448,1270 |
(C2×C14).310C24 = C14.1042- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).310C2^4 | 448,1277 |
(C2×C14).311C24 = C14.1052- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).311C2^4 | 448,1278 |
(C2×C14).312C24 = C4○D4×Dic7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).312C2^4 | 448,1279 |
(C2×C14).313C24 = C14.1062- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).313C2^4 | 448,1280 |
(C2×C14).314C24 = (C2×C28)⋊15D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).314C2^4 | 448,1281 |
(C2×C14).315C24 = C14.1452+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).315C2^4 | 448,1282 |
(C2×C14).316C24 = C14.1462+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).316C2^4 | 448,1283 |
(C2×C14).317C24 = C14.1072- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).317C2^4 | 448,1284 |
(C2×C14).318C24 = (C2×C28)⋊17D4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).318C2^4 | 448,1285 |
(C2×C14).319C24 = C14.1082- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).319C2^4 | 448,1286 |
(C2×C14).320C24 = C14.1482+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).320C2^4 | 448,1287 |
(C2×C14).321C24 = C22×C23.D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).321C2^4 | 448,1292 |
(C2×C14).322C24 = C2×C24⋊D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).322C2^4 | 448,1293 |
(C2×C14).323C24 = C23×Dic14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).323C2^4 | 448,1365 |
(C2×C14).324C24 = D7×C23×C4 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).324C2^4 | 448,1366 |
(C2×C14).325C24 = C23×D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).325C2^4 | 448,1367 |
(C2×C14).326C24 = C22×C4○D28 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).326C2^4 | 448,1368 |
(C2×C14).327C24 = C2×D4⋊6D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).327C2^4 | 448,1371 |
(C2×C14).328C24 = C22×Q8×D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).328C2^4 | 448,1372 |
(C2×C14).329C24 = C22×Q8⋊2D7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).329C2^4 | 448,1373 |
(C2×C14).330C24 = C2×Q8.10D14 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).330C2^4 | 448,1374 |
(C2×C14).331C24 = C24×Dic7 | φ: C24/C23 → C2 ⊆ Aut C2×C14 | 448 | | (C2xC14).331C2^4 | 448,1383 |
(C2×C14).332C24 = C22⋊C4×C2×C14 | central extension (φ=1) | 224 | | (C2xC14).332C2^4 | 448,1295 |
(C2×C14).333C24 = C4⋊C4×C2×C14 | central extension (φ=1) | 448 | | (C2xC14).333C2^4 | 448,1296 |
(C2×C14).334C24 = C14×C42⋊C2 | central extension (φ=1) | 224 | | (C2xC14).334C2^4 | 448,1297 |
(C2×C14).335C24 = D4×C2×C28 | central extension (φ=1) | 224 | | (C2xC14).335C2^4 | 448,1298 |
(C2×C14).336C24 = Q8×C2×C28 | central extension (φ=1) | 448 | | (C2xC14).336C2^4 | 448,1299 |
(C2×C14).337C24 = C4○D4×C28 | central extension (φ=1) | 224 | | (C2xC14).337C2^4 | 448,1300 |
(C2×C14).338C24 = C7×C22.11C24 | central extension (φ=1) | 112 | | (C2xC14).338C2^4 | 448,1301 |
(C2×C14).339C24 = C7×C23.32C23 | central extension (φ=1) | 224 | | (C2xC14).339C2^4 | 448,1302 |
(C2×C14).340C24 = C7×C23.33C23 | central extension (φ=1) | 224 | | (C2xC14).340C2^4 | 448,1303 |
(C2×C14).341C24 = C14×C22≀C2 | central extension (φ=1) | 112 | | (C2xC14).341C2^4 | 448,1304 |
(C2×C14).342C24 = C14×C4⋊D4 | central extension (φ=1) | 224 | | (C2xC14).342C2^4 | 448,1305 |
(C2×C14).343C24 = C14×C22⋊Q8 | central extension (φ=1) | 224 | | (C2xC14).343C2^4 | 448,1306 |
(C2×C14).344C24 = C14×C22.D4 | central extension (φ=1) | 224 | | (C2xC14).344C2^4 | 448,1307 |
(C2×C14).345C24 = C7×C22.19C24 | central extension (φ=1) | 112 | | (C2xC14).345C2^4 | 448,1308 |
(C2×C14).346C24 = C14×C4.4D4 | central extension (φ=1) | 224 | | (C2xC14).346C2^4 | 448,1309 |
(C2×C14).347C24 = C14×C42.C2 | central extension (φ=1) | 448 | | (C2xC14).347C2^4 | 448,1310 |
(C2×C14).348C24 = C14×C42⋊2C2 | central extension (φ=1) | 224 | | (C2xC14).348C2^4 | 448,1311 |
(C2×C14).349C24 = C7×C23.36C23 | central extension (φ=1) | 224 | | (C2xC14).349C2^4 | 448,1312 |
(C2×C14).350C24 = C14×C4⋊1D4 | central extension (φ=1) | 224 | | (C2xC14).350C2^4 | 448,1313 |
(C2×C14).351C24 = C14×C4⋊Q8 | central extension (φ=1) | 448 | | (C2xC14).351C2^4 | 448,1314 |
(C2×C14).352C24 = C7×C22.26C24 | central extension (φ=1) | 224 | | (C2xC14).352C2^4 | 448,1315 |
(C2×C14).353C24 = C7×C23.37C23 | central extension (φ=1) | 224 | | (C2xC14).353C2^4 | 448,1316 |
(C2×C14).354C24 = C7×C23⋊3D4 | central extension (φ=1) | 112 | | (C2xC14).354C2^4 | 448,1317 |
(C2×C14).355C24 = C7×C22.29C24 | central extension (φ=1) | 112 | | (C2xC14).355C2^4 | 448,1318 |
(C2×C14).356C24 = C7×C23.38C23 | central extension (φ=1) | 224 | | (C2xC14).356C2^4 | 448,1319 |
(C2×C14).357C24 = C7×C22.31C24 | central extension (φ=1) | 224 | | (C2xC14).357C2^4 | 448,1320 |
(C2×C14).358C24 = C7×C22.32C24 | central extension (φ=1) | 112 | | (C2xC14).358C2^4 | 448,1321 |
(C2×C14).359C24 = C7×C22.33C24 | central extension (φ=1) | 224 | | (C2xC14).359C2^4 | 448,1322 |
(C2×C14).360C24 = C7×C22.34C24 | central extension (φ=1) | 224 | | (C2xC14).360C2^4 | 448,1323 |
(C2×C14).361C24 = C7×C22.35C24 | central extension (φ=1) | 224 | | (C2xC14).361C2^4 | 448,1324 |
(C2×C14).362C24 = C7×C22.36C24 | central extension (φ=1) | 224 | | (C2xC14).362C2^4 | 448,1325 |
(C2×C14).363C24 = C7×C23⋊2Q8 | central extension (φ=1) | 112 | | (C2xC14).363C2^4 | 448,1326 |
(C2×C14).364C24 = C7×C23.41C23 | central extension (φ=1) | 224 | | (C2xC14).364C2^4 | 448,1327 |
(C2×C14).365C24 = C7×D42 | central extension (φ=1) | 112 | | (C2xC14).365C2^4 | 448,1328 |
(C2×C14).366C24 = C7×D4⋊5D4 | central extension (φ=1) | 112 | | (C2xC14).366C2^4 | 448,1329 |
(C2×C14).367C24 = C7×D4⋊6D4 | central extension (φ=1) | 224 | | (C2xC14).367C2^4 | 448,1330 |
(C2×C14).368C24 = C7×Q8⋊5D4 | central extension (φ=1) | 224 | | (C2xC14).368C2^4 | 448,1331 |
(C2×C14).369C24 = C7×D4×Q8 | central extension (φ=1) | 224 | | (C2xC14).369C2^4 | 448,1332 |
(C2×C14).370C24 = C7×Q8⋊6D4 | central extension (φ=1) | 224 | | (C2xC14).370C2^4 | 448,1333 |
(C2×C14).371C24 = C7×C22.45C24 | central extension (φ=1) | 112 | | (C2xC14).371C2^4 | 448,1334 |
(C2×C14).372C24 = C7×C22.46C24 | central extension (φ=1) | 224 | | (C2xC14).372C2^4 | 448,1335 |
(C2×C14).373C24 = C7×C22.47C24 | central extension (φ=1) | 224 | | (C2xC14).373C2^4 | 448,1336 |
(C2×C14).374C24 = C7×D4⋊3Q8 | central extension (φ=1) | 224 | | (C2xC14).374C2^4 | 448,1337 |
(C2×C14).375C24 = C7×C22.49C24 | central extension (φ=1) | 224 | | (C2xC14).375C2^4 | 448,1338 |
(C2×C14).376C24 = C7×C22.50C24 | central extension (φ=1) | 224 | | (C2xC14).376C2^4 | 448,1339 |
(C2×C14).377C24 = C7×Q8⋊3Q8 | central extension (φ=1) | 448 | | (C2xC14).377C2^4 | 448,1340 |
(C2×C14).378C24 = C7×Q82 | central extension (φ=1) | 448 | | (C2xC14).378C2^4 | 448,1341 |
(C2×C14).379C24 = C7×C22.53C24 | central extension (φ=1) | 224 | | (C2xC14).379C2^4 | 448,1342 |
(C2×C14).380C24 = C7×C22.54C24 | central extension (φ=1) | 112 | | (C2xC14).380C2^4 | 448,1343 |
(C2×C14).381C24 = C7×C24⋊C22 | central extension (φ=1) | 112 | | (C2xC14).381C2^4 | 448,1344 |
(C2×C14).382C24 = C7×C22.56C24 | central extension (φ=1) | 224 | | (C2xC14).382C2^4 | 448,1345 |
(C2×C14).383C24 = C7×C22.57C24 | central extension (φ=1) | 224 | | (C2xC14).383C2^4 | 448,1346 |
(C2×C14).384C24 = C7×C22.58C24 | central extension (φ=1) | 448 | | (C2xC14).384C2^4 | 448,1347 |
(C2×C14).385C24 = Q8×C22×C14 | central extension (φ=1) | 448 | | (C2xC14).385C2^4 | 448,1387 |
(C2×C14).386C24 = C4○D4×C2×C14 | central extension (φ=1) | 224 | | (C2xC14).386C2^4 | 448,1388 |
(C2×C14).387C24 = C14×2+ 1+4 | central extension (φ=1) | 112 | | (C2xC14).387C2^4 | 448,1389 |
(C2×C14).388C24 = C14×2- 1+4 | central extension (φ=1) | 224 | | (C2xC14).388C2^4 | 448,1390 |